POSSIBLE DESIGN AND STATISTICS COURSE FOR GGNB STUDENTS

STATS 100	Applied Stats for Biomedical Science: Descriptive statistics, probability, sampling distributions,
	estimation, hypothesis testing, contingency tables, ANOVA, regression; implementation of
	statistical methods using computer package.
STATS 102	Intro Probability Modeling and Statistical Inference: Rigorous precalculus introduction to
	probability and parametric/nonparametric statistical inference with computing; binomial,
	Poisson, geometric, normal, and sampling distributions; exploratory data analysis; regression
	analysis; ANOVA.
STATS 106	Applied Statistical Methods – Analysis of Variance: One-way and two-way fixed effects analysis of
	variance models. Randomized complete and incomplete block design, Latin squares. Multiple
	comparisons procedures. One-way random effects model.
STATS 108	Applied Statistical Methods: Regression Analysis: Simple linear regression, variable selection
	techniques, stepwise regression, analysis of covariance, influence measures, computing
	nackages
STAT 130A	Mathematical Statistics: Brief Course: Basic probability densities and distributions mean
JIAI 130A	variance, covariance. Chebyshey's inequality, some special distributions, sampling distributions
	central limit theorem and law of large numbers, point estimation, some methods of estimation
	interval estimation, confidence intervals for certain quantities, computing sample sizes
STAT 120P	Mathematical Statistics: Brief Course: Transformed random variables, large sample sizes.
51AT 150B	estimates Basic ideas of hypotheses testing likelihood ratio tests goodness-of-fit tests General
	linear model least squares estimates Gauss-Markov theorem Analysis of variance E-test
	Regression and correlation multiple regression
STAT 125	Multivariate Data Analysis: Prerequisite course 1208, and preferably course 1218. Multivariate
51A1 155	normal distribution: Mabalanohis distance: sampling distributions of the mean vector and
	covariance matrix: Hotelling's T2: simultaneous inference: one-way MANOVA: discriminant
	analysis: nrincinal components: canonical correlation: factor analysis. Intensive use of computer
	analysis, principal components, canonical correlation, factor analysis. Intensive use of compater
ARE 106	Quantitative Methods in Agricultural Economics: Prerequisite: course 100A Statistics 103
/	Statistical methods for analyzing quantitative agricultural economics data: linear and multiple
	correlation and regression analysis.
PLS 120	Applied Statistics in Agricultural Science: Application of statistical methods to design and analysis
1 20 120	of research trials for plant, animal, behavioral, nutritional, and consumer sciences. Basic concepts
	and statistical methods are presented in lectures laboratories emphasize data processing
	techniques, problem solving, and interpretation in specialized fields.
PLS 205	Experimental Design and Analysis: Prerequisite: course 120 or equivalent. Introduction to the
1 20 200	research process and statistical methods to plan, conduct and interpret experiments.
PLS 206	Applied Multivariate Analysis in Ag and Envir. Sci : Prerequisite: one of course 120. Statistics 106.
1 20 200	108, course 205 or equivalent. Multivariate linear and nonlinear models. Model selection and
	parameter estimation. Analysis of manipulative and observational agroecological experiments
	Discriminant, principal component, and path analyses. Logistic and biased regression.
	Bootstrapping. Exercises based on actual research by UC Davis students.
MPM 402	Medical Statistics I: Statistics in clinical laboratory and population medicine: graphical and
1011102	tabular presentation of data: probability: binomial Poisson normal t- E- and Chi-square
	distributions: elementary nonparametric methods: simple linear regression and correlation: life
	tables. Microcomputer applications of statistical procedures in population medicine.
MPM 403	Medical Statistics II: Prerequisite: course 402 or the equivalent. Continuation of course 402
	Analysis of variance in biomedical sciences: nonparametric methods: multiple regression:
	hiomedical applications of statistical methods. Microcomputer applications to reinforce principles
	that are taught in lecture
MPM 404	Medical Statistics III: Prerequisite: course 403 or the equivalent consent of instructor. Analysis of
1 IV I	I meaned etablished in the equiviter course has at the equivalent, consent of motifactor, Analysis of

	time dependent variation and trends, analysis of multiway frequency tables; logistic regression;
	survival analysis selecting the best regression equation; biomedical applications.
EPI 204	Statistical Models, Methods, and Data Analysis for Scientists: Prerequisite: Statistics 130B or
	131B, or 133; Statistics 108 recommended. Development of broad statistical skills useful for the
	analysis of scientific data. Special emphasis given to determining factors associated with
	characteristics like disease and time-to-event. Analysis of data that can be modeled as
	generalized linear and generalized linear mixed models, parametric and non-parametric survival
	models, and models for correlated, clustered, longitudinal data.
EPI 205A	Principals of Epidemiology: Basic epidemiologic concepts and approaches to epidemiologic
	research, with examples from veterinary and human medicine, including outbreak investigation,
	infectious disease epidemiology, properties of tests, and an introduction to epidemiologic study
	design and surveillance.
EDU 204A	Quantitative Methods in Educational Research: Analysis of Correlational Designs: Prerequisite:
	course 114 or the equivalent. Methods for analysis of correlation data in educational research.
	Topics include multiple correlation and regression, discriminant analysis, logistic regression, and
	canonical correlation. Emphasis on conceptual understanding of the techniques and use of
	statistical software. Offered in alternate years.
EDU 204B	Quantitative Methods in Educational Research: Experimental Designs: Prerequisite: course 114 or
	the equivalent. Methods for analysis of experimental data in educational research. Topics include
	ANOVA, fixed v. random effects models, repeated measures ANOVA, analysis of co-variance,
	MANOVA, chi square tests, small sample solutions to t and ANOVA.
SOC 106	Intermediate Social Statistics: Prerequisite: course 46B or Statistics 13 or the equivalent.
	Intermediate level course in statistical analysis of social data, emphasizing the logic and use of
	statistical measures, procedures, and mathematical models especially relevant to sociological
	analysis.